آینده ربات ها به چه صورت خواهند بود؟ آیا روزی ربات های جایگاه انسان در مشاغل مختلف را خواهند گرفت ؟ آیا رباتها میتوانند احساس داشته باشند ؟ آیا رروزی خواهد رسید که رباتها بتوانند انسانها را به کنترل خود در آورند؟

این سولات و هزاران سوال دیگر در رابطه با آینده رباتیک وجود دراد که شاید نتوان به درستی به همه این سوالات پاسخ داد. اما امروزه پیشرفت هوش مصنوعی به سرعت صورت میپذیر به حدی که ساخت رباتهای هوشمند و متفکر دیگر یک رویا نیستو دستیابی به این رباتها بسیار محتمل است. اما هوش مصنوعی چیست و چگونه به خلق رباتهای دارای ادراک منجر میشود.

تعریف هوش مصنوعی

البته تعریف دقیقی که مورد تایید همگان باشد از هوش مصنوعی وجود ندارد و هر کس با توجه به زمینه فعالیت خود تعریفی از هوش مصنوعی ارائه میدهد.

به همین خاطر، در طول تاریخ چهار نگرش کلی در مورد هوش مصنوعی به وجود آمده است.

هوش مصنوعی

هوش مصنوعی

متخصصین علوم شناختی

1- اولین افرادی که از واژه هوش مصنوعی استفاده کردند (مثل John McCarthy و Marvin Minsky) به دنبال شبیه‌سازی دقیق مغز انسان و پیاده‌سازی مدل مصنوعی آن بودند تا از این طریق بتوانند ساختار مغز و در نتیجه انسان را بهتر بشناسند به همین خاطر امروزه به افراد با این نگرش، متخصص علوم شناختی (Cognitive Scientist) می‌گویند. متخصصین با این نگرش در واقع به دنبال ساخت سیستم هایی اند که دقیقا همانند انسان فکر کنند.

آزمون تورینگ

2-عده ای از محققان به ویژه افرادی که از علومی همچون روانشناسی وارد این حوزه شده اند، خیلی به دنبال درک دقیق ساختار داخلی مغز و شبیه‌سازی عینی آن نیستند، بلکه به دنبال ساخت سیستم هایی اند که فارق از ساختار داخلی، عملکردی شبیه به عملکرد انسان داشته باشند Alan Turing از برجسته ترین دانشمندان این حوزه در سال ۱۹۵۰ آزمونی را برای سنجش هوشمندی این سیستم ها پیشنهاد داد که به آزمون تورینگ مشهور است. در این آزمون، سیستم هوشمند مصنوعی باید بتواند یک داور انسانی را در چت طوری فریب دهد که او نتواند تشخیص دهد که در حال صحبت با یک کامپیوتر است! این آزمون در سال ۲۰۱۴ توسط یک چت بات به نام Eugene Goostman  پاس شد.

سیستم‌های خبره

3-دسته دیگری از محققین به ویژه مهندسان قدیمی تر کامپیوتر و ریاضی‌دان ها هستند که معتقد اند اگر ساختار دقیق مغز انسان و یا رفتار او در ماشین‌ها شبیه‌سازی شود، آنگاه ماشین‌ها نیز دچار خطاهایی خواهند بود که از انسان‌ها سر می‌زند. آنها معتقد اند با استفاده از کامپیوتر ها باید نقایص موجود در انسانها را رفع کرد و سیستم‌هایی ساخت که عقلانی و منطقی (به عبارت دیگر، صحیح) فکر می‌کنند. محققین این حوزه در تلاش اند تا اشیا و روابط موجود بین آنها در دنیای واقعی را تماماً و بدون ابهام به صورت ریاضی و منطقی مدل کرده و آنها را به کمک کامپیوتر ها پیاده‌سازی کنند. سیستم‌های خبره (Expert Systems) حاصل تلاش این محققین بوده است.

عدم مدلسازی ریاضی

4- اما بسیاری از محققین هوش مصنوعی، نگرش سوم را غیر واقع بینانه می‌دانند و معتقد اند بسیاری از پدیده ها و روابط دنیای واقعی با روش های موجود در ریاضیات و منطق قابل مدلسازی نیستند و یا بدتر از آن، حتی خود انسان‌ها نسبت به خیلی از این پدیده‌ها بینش کافی ندارند و قطعا نمی‌توانند مدلسازی کامل و قابل استنادی از آنها داشته باشند. برای مثال شاید بتوانیم دانش یک فرد خبره در یک حوزه خاص (مثلا یک پزشک) را استخراج کرده و آن را به زبان ریاضی و منطق مدل کنیم، سپس یک سیستم خبره جهت تشخیص اولیه بیماری از روی علایم بسازیم، اما آیا می‌توانیم سیستمی بسازیم که همچون انسان بتواند ببیند و افراد آشنا را از افراد غریبه متمایز کند؟! آیا روش عملکرد سیستم بینایی انسان برای ما آشکار است؟! آیا اگر عملکرد این سیستم برای ما آشکار بود می‌توانستیم آن را به صورت یک الگوریتم مشخص کامپیوتری پیاده‌سازی کنیم؟!

بنابراین بسیاری از دانشمندان در حال حاضر مشغول کار بر روی سیستم هایی اند که فارق از ساختار داخلی، بتوانند عملکرد صحیح و عقلانی به ویژه برای حل یک مساله خاص (مثلا بینایی ماشین) داشته باشند.

هوش مصنوعی امروزه به سرعت در حال پیشرفت است و در بخشهای مختلفی از زندگی ما مورد استفاده قرار میگیرد.

کاربرد هوش مصنوعی

برای مثال برخی از چراغ‌های راهنمایی رانندگی هوشمند با محاسبه زمان مورد نیاز برای توقف خودرو‌ها در پشت چراغ قرمز از هوش مصنوعی استفاده می‌کنند. غلط یاب‌ گوشی‌های هوشمند کلماتی را که نادرست نوشته شده‌اند را شناسایی و آن را با کلمه‌ی درست جایگذاری می‌کنند. آن‌ها شیوه نگارش شما را یاد می‌گیرند و کلماتی مناسب را برای تکمیل جمله ارائه می دهند. دستیار‌های صوتی گوگل (Google Now) ، اپل (Siri) و مایکروسافت (Cortana) به سوالات و درخواست‌های شما پاسخ می‌دهند و در هنگام رانندگی تنها با گوش سپردن به سخنان شما؛ برای دوستانتان پیامک می نگارد و ارسال می‌کند . همچنین با شناختی که از شما دارند (مانند سلیقه) به بررسی رستوران‌های نزدیک مورد علاقه شمامی‌پردازند و بهترین رستوران را پیشنهاد می‌دهند.

Cortana

Cortana

همچنین برخی از موتور‌های جستجوگر مانند گوگل شیوه جستجو نمودن شما را یاد می‌گیرند و متناسب با آنچه که به دنبال آن می‌گردید، نتایج را سفارش سازی می‌کنند. به تبلیغات هوشمند گوگل  نیز می‌‌توان اشاره کرد: کافی است یک اپلیکیشن را از فروشگاه اپلیکیشن گوگل (Google Play) دانلود و یا فیلمی را از یوتیوب نگاه کنید تا تبلیغات مرتبط با آن‌ها را در سایت‌هایی که از کد‌های تبلیغاتی گوگل استفاده می‌کنند مشاهده کنید. اپلیکیشن و سایت فیسبوک را نیز می‌توان به عنوان یکی از سایت‌هایی نام برد که با استفاده از هوش مصنوعی، تبلیغات خود را برای کاربران هدفمند نموده  و باعث شده است تا سودی چند برابر به دست آورد.

از دیگر کاربرد‌های هوش مصنوعی می‌توان  تطابق دادن اثر انگشت‌ها یا چهره‌ها برای باز نمودن قفل امنیتی گوشی‌های هوشمند را نام برد.

بنابراین ساخت رباتی هوشمند که بتواند مانند انسان فکر و یا عمل کند دیگر یک امر محال و غیر ممکن به نظر نمیرسد. البته توانایی مغز انسان را ساده نپندارید. برای درک بهتر این موضوع شبیه سازی مغز یک موش توسط IBM را مورد بررسی قرار میدهیم.

شبیه ساری مغز یک موش

IBM  تا به حال توانسته به قدرتی فراتر از قدت پردازشی مغز یک موش دست پیدا کند. اندازه کل مجموعه‌ی طراحی شده برابر با سایز یک یخچال کوچک است.

درون این مجموعه بسته‌‌های کوچکی به اندازه‌ی درایو دیسک سخت ( هارد درایو) رایانه قرار گرفته است. داخل این بسته‌های کوچک تراشه‌هایی که همگی مبتنی بر فناوری شبکه‌های عصبی هستند قرار گرفته‌اند IBM این تراشه‌ها را TrueNorth نام گذاری کرده است.  این تراشه‌ها با استفاده از سیلیکون و متشکل از آنالوگ‌های فیزیکی طراحی شده‌اند که شامل نئورون‌ها و سیناپس‌ها (ارتباط بین نئورون) هستند و به صورت اختصاصی برای فعالیت در بستر شبکه‌های عصبی طراحی شده‌اند.

ibm

ibm

هر تراشه شامل بیش از یک میلیون نئورون و ۲۵۶ سیناپس بین نئورون‌ها است. درون هر بسته  بیش از ۴۸ میلیون نئورون سیلیکونی قرار گرفته که تعداد آن‌ها از نئورون‌های موجود در غشا مغزی یک موش بیشتر است. مغز موش‌ها بیش از ۲۱ میلیون نئورون در خود جای داده است. با در نظر گرفتن این موضوع می‌توان به جرات گفت که قدرت پردازشی فوق‌العاده‌ای درون این بسته‌ها جا گرفته است. پیاده‌سازی چنین شبکه‌ی عظیمی با استفاده از معماری‌های معمول می تواند فضای زیادی را اشغال کند بطوریکه انرژی مورد نیاز برای راه‌اندازی آن می‌توان با انرژی الکتریکی مورد نیاز یک شهر برابری کند؛ اما آنچه که IBM ساخته است تنها به ۷۰ میلی وات انرژی نیاز دارد.

با مقایسه توانایی مغز یک انسان با موش در خواهیم یافت که بشر راه درازی برای شبیه سازی یک سیستم کاملا هوشمند مانند انسان پیش رو خواهد داشت اما همین توانایی مغز انسان سرعت پیشرفت تکنولوژی را به قدری افزایش داده که بتواند این مسیر طولانی را در زمانی نه چندان طولانی طی کند.